Recognition of triple-helical DNA structures by transposon Tn7.

نویسندگان

  • J E Rao
  • P S Miller
  • N L Craig
چکیده

We have found that the bacterial transposon Tn7 can recognize and preferentially insert adjacent to triple-helical nucleic acid structures. Both synthetic intermolecular triplexes, formed through the pairing of a short triplex-forming oligonucleotide on a plasmid DNA, and naturally occurring mirror repeat sequences known to form intramolecular triplexes or H-form DNA are preferential targets for Tn7 insertion in vitro. This target site selectivity depends upon the recognition of the triplex region by a Tn7-encoded ATP-using protein, TnsC, which controls Tn7 target site selection: the interaction of TnsC with the triplex region results in recruitment and activation of the Tn7 transposase. Recognition of a nucleic acid structural motif provides both new information into the factors that influence Tn7's target site selection and broadens its targeting capabilities.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Tn7 transposition: target DNA recognition is mediated by multiple Tn7-encoded proteins in a purified in vitro system.

We have reconstituted the transposition of the bacterial transposon Tn7 into its specific insertion site attTn7 with four purified Tn7-encoded proteins, TnsA+TnsB+TnsC+TnsD, and ATP. TnsA+TnsB+TnsC form a "core" recombination machine that recognizes the transposon ends and executes DNA breakage and joining; TnsD specifically recognizes attTn7. TnsA+TnsB+TnsC are specifically targeted to attTn7 ...

متن کامل

A minimal system for Tn7 transposition: the transposon-encoded proteins TnsA and TnsB can execute DNA breakage and joining reactions that generate circularized Tn7 species.

In the presence of ATP and Mg(2+), the bacterial transposon Tn7 translocates via a cut and paste mechanism executed by the transposon-encoded proteins TnsA+TnsB+TnsC+TnsD. We report here that in the presence of Mn(2+), TnsA+TnsB alone can execute the DNA breakage and joining reactions of Tn7 recombination. ATP is not essential in this minimal system, revealing that this cofactor is not directly...

متن کامل

Transposon Tn7 Preferentially Inserts into GAA•TTC Triplet Repeats under Conditions Conducive to Y•R•Y Triplex Formation

BACKGROUND Expansion of an unstable GAA*TTC repeat in the first intron of the FXN gene causes Friedreich ataxia by reducing frataxin expression. Structure formation by the repeat has been implicated in both frataxin repression and GAA*TTC instability. The GAA*TTC sequence is capable of adopting multiple non-B DNA structures including Y*R*Y and R*R*Y triplexes. Lower pH promotes the formation of...

متن کامل

Tn7 recognizes transposition target structures associated with DNA replication using the DNA-binding protein TnsE.

We report that the bacterial transposon Tn7 selects targets by recognizing features associated with DNA replication using the transposon-encoded DNA-binding protein TnsE. We show that Tn7 transposition directed by TnsE occurs in one orientation with respect to chromosomal DNA replication, indicating that a structure or complex involved in DNA replication is likely to be a critical determinant o...

متن کامل

Avoiding self: two Tn7-encoded proteins mediate target immunity in Tn7 transposition.

The bacterial transposon Tn7 exhibits target immunity, a process that prevents Tn7 from transposing into target DNAs that already contain a copy of the transposon. This work investigates the mechanism of target immunity in vitro. We demonstrate that two Tn7-encoded proteins_TnsB, which binds specifically to the ends of Tn7, and TnsC, the ATP-dependent DNA binding protein_act as a molecular swit...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 97 8  شماره 

صفحات  -

تاریخ انتشار 2000